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Abstract

Feedback linearization is a valuable method utilized in control
systems to convert the dynamics of nonlinear systems into a linear
format, simplifying their analysis and control. However, managing
highly nonlinear systems can be both challenging and complex. This
paper seeks to address this challenge by proposing an enhanced
approach to the feedback linearization technique. To improve the
feedback linearization tracking control of multi-input multi-output
(MIMO) nonlinear systems, the paper investigates two primary
strategies. The first strategy involves adjusting control gains
mathematically along with other parameters to optimize control
performance, enabling precise tuning of the system's behavior and
response to achieve specific objectives. The second strategy focuses
on evaluating the performance of feedback linearization control
through simulations across various scenarios, disturbances, and
reference inputs. By conducting these simulations, researchers can
thoroughly examine how the system behaves and performs under
different conditions. It is essential to maintain system stability
throughout these adjustments and simulations. The paper examines
two feedback linearization techniques: input-output linearization
and input-state linearization. Each method provides distinct
advantages and trade-offs depending on the system's characteristics
and control objectives. By applying these techniques, the goal is to
achieve the desired tracking performance and behavior of a
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nonlinear system with three inputs and three outputs, which serves
as the primary application in this work.

Keywords: Linear Systems, Nonlinear Systems, Tracking Control,
Feedback MIMO Systems, Stability Concept, Environmental
Disturbances, Control Optimization.
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Introduction
In the feedback linearization approach, the primary goal is to

stabilize and manage nonlinear systems by converting their
dynamics into a linear structure.

This work emphasizes local feedback linearization, where
coordinate transformations and control laws are defined only within
a localized region to avoid complexities associated with global
solutions [6]. Feedback linearization generally relies on two main
approaches: input-output linearization and input-state linearization.
In input-output linearization, a linear relationship is established
between the transformed inputs (v) and the actual outputs (y),
followed by designing a linear controller for the resulting linearized
input-output model. However, this method often leaves behind a
residual nonlinear subsystem that remains unaddressed [3,10]. On
the other hand, input-state linearization seeks to linearize the
relationship between the transformed inputs and the entire
transformed state vector [19]. This is achieved by defining artificial
outputs (Y) to create a feedback-linearized model with state
dimension r = n. Controllers designed via this method are more
complex, as the mapping between transformed inputs and original
outputs (y) remains nonlinear. Consequently, input-state
linearization is less practical compared to input-output methods [8].
The structure of the remaining sections of this paper is as follows:

Section Il; presents previous works. Section Il presents a detailed
discussion on the input-output feedback linearization technique for
MIMO systems, providing a thorough understanding of its
principles and highlighting its importance in effectively handling
nonlinear systems. Section IV discusses the input-state linearization
technique for MIMO nonlinear systems. Section V defines the
problem statement, focusing on specific MIMO nonlinear systems
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consisting of 3 inputs and 3 outputs. Section VI outlines the
simulation process using MATLAB, applying both principal input-
output and input-state feedback linearization techniques. It explains
the methodology used, the parameters considered, and presents a
detailed analysis of the obtained results, including system responses.
This section critically evaluates the effectiveness and suitability of
the proposed techniques. Lastly, Section VII provides the
conclusion, summarizing key findings, discussing their
implications, and highlighting the study’s contributions.
Additionally, it suggests potential future research directions and
areas for further improvement, serving as a comprehensive
conclusion to the paper.

Literature Review

Several methods have been developed to simplify the control of
nonlinear systems by transforming them into linear equivalents.
Among these, feedback linearization has emerged as a widely
studied and applied technique. These techniques allow for the
applications of linear control strategies to nonlinear systems as
noted in [1, 4]. The method seeks to remove nonlinearities from the
system dynamics by identifying an appropriate transformation of
variables, as discussed in [1, 2, 3].

As stated in [3], nonlinear MIMO systems can be expressed in the
following Equation (1) within continuous-time state-space models.

1)

where: x represents an n-dimensional vector of state variables;
u denotes an m-dimensional vector of control inputs or manipulated
variables; y corresponds to an m-dimensional vector of output
variables; f(x) is an n-dimensional vector of nonlinear functions;
g(x) is an (n X m) dimensional matrix of nonlinear functions; and
h(x) is an m-dimensional vector of nonlinear functions.

x = f(x) + X%, 9:(0) wy, }
yi=hi(x). i=12,..,m

For MIMO, m in Equation (1) is the number of inputs and outputs;
on the other hand, feedback linearization offers the advantage of
generating a linear model that accurately mirrors the original
nonlinear system across a wide range of operating conditions. The
method involves two sequential steps: the first step focuses on
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modifying the system’s nonlinear coordinates, and the second step,
the nonlinear state feedback, is implemented [4, 5].

Various techniques have been implemented in this field, producing
a range of outcomes. For instance, the authors in [1, 4] provide a
detailed explanation of the feedback linearizing control principle. In
[2], Delgado, and others present input-output linearization of MIMO
systems with Applications to longitudinal flight dynamics. The
nonlinear control of MIMO systems using feedback linearization
and a PD controller for tracking is introduced by Ghozlane, Wafa,
and Jilani Knani in [3]. In [5], Horacio J. and Marquez explore the
analysis and design of nonlinear control systems. Meanwhile,
Wang, Jianliang, and W. Hassan Khalil discusses adaptive output
feedback control for nonlinear systems in [6, 7]. Rugh and Jianliang
present feedback linearization approaches for nonlinear systems in
[8]. Also, Sastry and Shankar analyze the stability and control of
nonlinear systems in [9].

Additional details on feedback linearization for nonlinear MIMO
variables are available in [10], [11], and [12]. Furthermore, adaptive
MIMO nonlinear systems utilizing fuzzy logic control and extreme
learning machines are discussed in [14, 15]. Lastly, output feedback
linearization for neural network-based ANARX models and
nonlinear control for output voltage regulation of a boost converter
with a constant power load are presented in [17, 18], respectively.

Input-Output Feedback Linearization for MIMO Systems
(1/0)

In this section, the focus is on the concept of linearization of MIMO
nonlinear systems. The primary aim of feedback linearization is to
establish a linear relationship among the outputs Y; and the
redesigned inputs V; as illustrated in Figure 1. For MIMO systems
described by Equation 1, f; g; and h; are sufficiently smooth
withinadomain U < R"[1, 2, 3]. The mappings f : U — R™and
g : U — R"referred to as vector fields on U [13, 16].

By referring to Equation 1 and computing the first derivative of the
outputs y; with respect to x, further analysis can be conducted as
follows:
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Figure 1. Input-Output Feedback of MIMO Linearization Technique [3].

yo= Gok = TUIF() + I, gi(u] £ Dpi(o) +

Zile h; (x)ul, ()

where:
Dphy() = ZL[f(2)], )
Dyhy(x) = a’“ [9(0)] 3)
DyDyhy(x) = Df "g(x ))I

Then:

D]th(x) = h;(x), )

Dfhi(x) = DsDshi(x) = %f(x).
' > 4)

" 1 o(of )
D¢ hi(x) = D¢ Dy hi(x) = ——=f(x). )
Where:
Vi = V1Y e YT ©)
= [ug, Upy e, Uy i =1,2,0,m

Note: In this work, the number of inputs is equal to the number of
outputs.

Definition 1: In Equation 4, if D h;(x)u; = 0,theny; = Dgh;(x)
(which is independent of u;). For more explanation, it is necessary

to calculate the second derivatives and higher-order derivatives
[1,3].
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¥ = ZLEF(x) + gi@u,] ©
= szhl(X) + Dnghi(x)ui.

Once more, if DyDph;(x) w; = 0, then y¥ = DZ h;(x) (which is
independent of w;).

Definition 2: If we perform the same calculations for higher
derivatives, we obtain the following.

if DgDf 'hi(x) =0, i=1,2,..,r =1, DyDf™" #0, then u
does not appear in y;, ¥ . oo e, 1L
Equation 6 is modified as:

yi~t = Dfhi(x) + DgDf~‘hi(x)u (7
finally, the control laws can be formed as:

u; = hi(x) + Ui]- (8)

1 r
DgDF 1hy(x) [_Df
Then by substituting with the value of wu; that represented in
Equation 8, into the nonlinear system that represented in Equation
1, the MIMO systems become input-output linearizable, reducing to
y" = v which forms a chain of r integrator. After the feedback
linearization process, the system models become linear in the form:

{ =A{+Bv
navaa ®

Where: ¢ is r- dimensional vector of transformed state variables; v
and Y are m- dimensional vectors of transformed input and output
variables respectively; and the matrices A, B and C are in simple
structures, and for MIMO system can be written as stated in [3].

Ayp .. 0 By .. O [C] O]
0 .. Ap 0 .. Bjp 0 .. G
And
[0 1 .. 0]
|0 0o .. 0| 0 .
Aji =l e € ]R]‘X]i, Bji = [ € R/ Cji =
lO 0o .. 1J 1
0O 0 ..0
[1 0.. 0] € RJ
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Stability Analysis:

Stability analysis plays a crucial role in the input-output feedback
linearization method. While stability is not the main goal of this
technique, it is imperative to guarantee the stability of the closed-
loop system once the linearized control design is implemented [9].
This viewpoint is supported by references [4, 5] and [6].

Lemma 1: The nonlinear system defined in Equation 1 is said to
have a relative degreem,1 < m < ninregionU, < U if

DD hi(x) =0, i=1,2,...... ,m— 1.
D,D™ hi(x) #0 forallx € U, .
Lemma 2: The nonlinear system defined in Equation 1, has relative

degree m < ninthe region U. If m = n then for every x, € U,
a neighborhood N of x, exists such that:

hi(x)
_| oo |

DF ™ hy(x)

Bounded to N, is a diffeomorphism on N [8, 9].
In addition, if m < n, then for each x, € U, a neighborhood N of
X, and smooth functions.

W1(%), v vee o, Yy (x) exist such that %g(x) =0,forl <
i <(n—m)forall x € N, and the matrix.

T(x) (10)

P1(x)

‘l’.T‘.‘..’.Ff.x.)
T(x) = hi(.X) =
thi(x) o (x)

P(x) ¢
- [ ] (11)
§

Dy ()
h;(x)

D¢h; .
where: ¢(x) = | D f(x) | € R™
D" 'h;(x)
Equation 11 is bounded to N which is a diffeomorphism on N.
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The next step is by taking the derivative for both ¢ and ¢ variables,
we obtain:

(‘ = fO((' E)
Sé = A+ Boy()[u — a(x)] (12)
y=Ci

Where; ¢ € R,,, { € R™™, and (A¢, B¢, Cc) represents the
controller canonical form of a chain of m integrators.

600, 8) = 22 f () yeg-1(2) - (13)
Where
Dy hy (x)
y(x) = : € R™* My, (14)
DngZ”"y‘lhny (x)
and
—D}”lhl (x)
a(x) = Bx) € R™, (15)
=D hn, (1)

Known that B(x) € R™*™ is the pseudo-inverse of (x) . Finally,
the controller u can be written in the form

u= alx)+ px)v. (16)
Yields:

§= A+ BAX) v (17)
where A(x) 2 y(x) B(x) € R™*™ and v € R™. Note that A(x)
can be written as:

A(x) .. 0
Ax) =] ol (18)

0 Any(x)
Where, forall i = 1, ...,n,,4;(x) is either 1 or 0.

Referring to the system of equations represented in (11), (12), and
(17), the MIMO system is asymptotically stable. Furthermore, for
tracking purposes, vector v in Equation 16 must satisfy the following
[9, 10]:

Vi = Yot K Ot =0 o Ky (Y = v1), (29)
withl<i<p.
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In addition, ymi,y,%li, y,’,ll‘l are known as different trajectories for

different outputs of the system, and the polynomials K; are chosen
to have roots with negative real parts [2]. Thence, the error e;(t) =
Ym,;(t) — y;(t), must satisfied tlim e;(t) = 0, this implies the

MIMO system is stable.

Input-State Linearization (1/S)

Input-state  linearization is a powerful technique for
controlling MIMO nonlinear systems [1,3]. The goal is to transform
the nonlinear system into a fully linear system in the state-space
domain using a nonlinear coordinate transformation and state
feedback, more information about the structure of this technique can
be found in [1,2].

In this section, Equation 1 can be reconsidered for the input-state
linearizing method as:

x = f0) + XLy 9100wy, }

y;=h(x). i=12,..,m (20)

Where: x € R™", is the state vector, u € R™ is the control input
vector. f(x) € R™isthe drift vector field, g;(x) are smooth fields,

u=[U, -, Un]T is the control input and h(x) € R™ is the
output matrix.

For a successful linearization procedure, two assumptions should be
considered in this process.

Assumption 1: (Controllability Condition) To make the nonlinear
system fully linearizable using the input-state method, it should be
controllable in the nonlinear sense.

Assumption 2: (Involutivity condition) The distribution spanned by
the columns of g(x) must be involutive (i.e. the lie bracket any two
columns of g(x) must lie in the span of g(x) [4].

To linearize the nonlinear system in Equation 20, we define the
following transformation.

z =T(x), (21)

Where: z € R", is the new state vector in the transformed
coordinates.
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T(x) =[T1(x) T,(x).. T,()]" (22)
And
zf = DI Ty (), (23)

wherei=1,...,m;j=1,..,mn.

The system defined in Equation 22 and Equation 23 is a linear
system, and the next step is to compute the Lie derivative as follows:

Zi = Ziz1, )
Ziv1= Zita
' (24)
: I
Z‘n = 7;. }
Where: v; = [V1, ., VUm]T, is the new control inputs in the
transformed coordinates. Equation 24 can be rewritten in the form:
Z=Az+Bw. (25)
[0 1 0 .. 0] [0]
[0 0 1 .. Of [0
Where, A=|: : : :+ |, B=|:].
0 0 0 .. 1 1
0O 0 0 .. 0 0
Then the new control input v can be formed as:
v=—-KZ, (26)
where K is the feedback gain matrix, and the control law in
Equation 16 is recalled and modified as:
u=G"1x)(—b(x) +v). (27)
where G (x) is the decoupling matrix, which is defined as:
Gyj(x) = Dg; {7 T3(x), (28)

where G(x) € R™™, and b(x) is the nonlinearity vector which
denoted as:

bi(x) = DJ'T;(x), (29)

where b(x) € R™; finally, if we compare Equation 16 with
Equation 27, we obtain the following:

a(x) = =G 1(x)b(x) and B(x) = G 1(x).
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Problem Statement

In this section, we introduce the problem statement by examining a
representative example involving MIMO nonlinear system and
analyzing the resulting outcomes. To begin, let us consider the
following nonlinear MIMO system:

X1:x2+u3

Xy = —X1X3 + x5 +uy

X3 = X1Xy + Uy ’ (30)
V1 =X2

V2 = X3

V3 = X1X3 )

Where x; , x, and x5 are the system states, u;,u; and us are the
system controls, and y,, y; and y; are the system outputs.

Then, the tracking errors can be defined as:
€1 = YV1-da — X1
€2 = Y2-a — X2 (31)
€3 = Y3-q4 — X3,
Where y;_4,¥2-4 and y;_, are the system reference trajectories.
By combining Equations 30 and 31, we obtain the following:

X1 = Y1-a + ki(Y1-qa — %1)
Xy = Yooa + Kko(Yoqg —x2) ¢, (32)
k3= Y3-q + k3(¥3-a — x3)
Where k, , k, and k5 are the feedback system gains. The next step
is to calculate the error dynamics, which can be stated as:

€1 = Yi—qa — X1 = —kqe4
€y = Yo_q— Xg = —kzez} . (33)
€3 = Y3_q — X3 = —kzes

Thence the control laws can be defined as:
U = Y1-q + k1€q
Uy =Yyq+ kzez}- (34)
Uz = Y3_q + kses

Furthermore, the coordinate transformation can be defined as:
Z1 = Y1=X2
Z; =Y, = xs}. (35)
Z3 = Y1=X1X3

And the output lie derivative are:
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Y1 = —X1X3 + X5 +uy
V2 = X1X2 Uy (36)

V3 = x3 + x;(—x1x3 + x5 + uy) + x,u3.

Finally, the control law becomes:
u=G"1(v->b), (37)

Where, G~ is the decoupling matrix inverse, b is the drift term and
v is the new linear control input with tracking terms.

Simulation and Results

This section aims to apply two distinct methods input-output
feedback linearization and input-state linearization to address the
problem outlined in this paper. The goal is to enhance control and
performance for the systems being studied. Furthermore, the results
derived from both techniques will be compared to evaluate their
effectiveness and applicability to the specific problem at hand. This
comparative evaluation will offer critical insights into the
advantages and limitations of each method, helping to identify the
most suitable approach for tackling similar challenges in the future.

Task (1)

Simulation was conducted using the input-output feedback
linearization technique. The results of the simulation for the
described problem are illustrated in Figure 2 (a, b, c, and d).

The observed rms errors obtained in Figure 2(d); ranged from
(0.062745 for e; , 0.100392 for e,, and 0.012550 for e5 ) this means
the outputs tracking the reference inputs smoothly and the controls
linearized the nonlinear system as desired, and the input-output
linearization method works great for this system.

These low RMS values indicate that the outputs y,, y,, y; closely
follow their respective reference trajectories y;_4, Y2—a, ¥Y3—q With
minimal deviation. The small magnitude of e; (0.01255) suggests
near-perfect tracking for the third output, likely due to the system’s
decoupled dynamics or reduced nonlinear coupling in that channel.
Conversely, the slightly higher error for e, (0.10039) may reflect
residual nonlinear interactions or unmodeled disturbances in the
second output channel, which could be mitigated by refining the
feedback gains or incorporating adaptive terms.

The success of the input-output linearization is further demonstrated
by the smooth convergence of all outputs to their references,
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confirming that the nonlinearities were effectively canceled by the
control law.

—X (Actual)
==Y (Desired)
—, (Actual)

vy (Desired)

—_X (Actual)

== =Yu (Desired)

w—(11

u2

—u3

—( -X
g5 beseloselosedese 1197
|

T
|

4

| | | |

\ |
0p f
|

[ |
8

i | | ==Y %y
T T T
| | |

45 | | |

0 2 4 6

—8" Y%

Figure 2. Simulation using input-output feedback linearization technique
(a) State Trajectories (b) Output Tracking Performance (c) Control
Inputs (d) Tracking Errors.

Task (2)

Simulation was performed using the input-state feedback
linearization technique. For Task (2), the same parameters as those
used in Task (1) were applied. The simulation results for the
problem discussed in this paper are shown in Figure 3 (a, b, ¢, and
d).
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The observed rms errors in Figure 3 ranged from (0.011715 for e, ,
0.0195476 for e,,and 0.009652 for e; ). This indicates that the
outputs tracked the reference inputs smoothly, confirming that the
controls effectively linearized the nonlinear system as intended.
Therefore, the input-state linearization method performs well for
this system.
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Fig. 3. Simulation using input-state feedback linearization technique (a)
State Trajectories (b) Output Tracking Performance (c) Control Inputs
(d) Tracking Errors.

Task (3)

In this task, we have compared the obtained results between two
methods for this system:
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1.Key differences between the two methods
TABLE 1. Key differences between the two methods

Input-Output

Input-State Linearization

lres Linearization (1/0) (11S)
Linearizes only the input- | Linearizes the entire state-
Scope
output map space
Leaves unobservable Eliminates all
Internal Dynamics dynamics (zero nonlinearities in the state
dynamics) uncontrolled equations

Tracking Focus

Direct output tracking

Full state tracking
(indirect output tracking)

Requires fewer

Requires full-state

Complexity computations (output transformation and Lie
derivatives only) derivatives
Stability Depends on zero Guaranteed stability if

dynamics stability

linearization is exact

2. RMS Error Comparison
TABLE 2. RMS Error Comparison

Error 1/O Linearization I/S Linearization Comparison
e, 0.062745 0.011715 I/S better
e, 0.100392 0.0195476 I/S better
e 0.012550 0.009652 I/S better
3. Why Input-State Linearization Performs Better
a) Full State Control
. I/S linearization cancels all nonlinearities in the state

equations, ensuring the entire system behaves linearly.

. I/O linearization only enforces a linear input-output
relationship, leaving internal dynamics (e.g. x; in this system)
unregulated. These unregulated states can destabilize outputs
indirectly.

b) Error Dynamics

. The error dynamics for 1I/S linearization are explicitly
defined as

é = —k, e, guaranteeing exponential convergence to zero.

. In 1/0O linearization, error convergence depends on the

stability of internal dynamics (e.g. x;), which may introduce
residual errors.

¢) Control Authority

. I/S linearization uses full-state feedback to compute control
inputs, allowing direct cancellation of cross-coupling terms (e.g. x;
X3 N x, ).
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. I/0 linearization relies on output derivatives, which may not
fully decouple the system.

Conclusions and Future Work

In summary, input-state feedback linearization transforms the
system dynamics by adjusting the internal state variables, whereas
input-output feedback linearization achieves linearization by
manipulating the input and output variables. The selection of the
appropriate method depends on factors such as the accessibility and
ease of measuring the system’s internal states, as well as the specific
control objectives. Both techniques vyield closely aligned and
satisfactory results for the problem examined in this study.
However, based on the findings, input-state feedback linearization
demonstrates greater accuracy compared to input-output feedback
linearization. This is primarily due to the feasibility of direct
measurement in the applications considered. In general, input-state
feedback linearization proves to be more suitable than input-output
feedback linearization in practical scenarios where direct
measurement or reliable estimation of the system’s internal states is
achievable.

For future work, we intend to explore linearization approaches for
nonlinear adaptive systems characterized by incomplete or
uncertain parameters and dynamic knowledge. Such systems
introduce distinct complexities that necessitate customized
techniques for successful linearization and regulation. Investigating
this intersection aims to deepen theoretical insights and formulate
practical solutions for operating in environments with inherent
uncertainties.
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